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1 Introduction

1.1 Approaches to Distributed Simulation

One of the advantages of computers is that they can be used to simulate

systems that cannot be observed directly. Parallel computers are used ex-
tensively for simulation. Many parallel simulators are time-driven: At the

k-th step, where k __.0, the simulator computes the state at time k of all pro-

cesses in the physical system (i.e., the system being simulated). This paper
is concerned with event.driven distributed simulation in which the simulator

may compute the behavior of different subsystems up to different points in
time. There are two common approaches to event-driven distributed sim-

ulation: the conservative approach [1, 7] and the optimistic approach [6].

A computation in the conservative approach proceeds by determining the
correct behavior of each physical process in a time interval. A computa-
tion in the optimistic approach may compute an incorrect behavior that is
corrected later by rollback and recovery. This paper presents a new conser-

vative approach that appears to be efficient. Performance measurements of

the simulator written in Cosmic C, running on an Intel iPSC/1, are provided.

*On leave of absence from The University of Texas at Austin.
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1.2 Our Point of Departure

Most of the distributed simulator_ described in the literature are designed
so that the structure of the simulator mirrors the structure of the physical

system: A message between a pair of processes in the simulator represents
an event that changes the states of the corresponding pair of processes in
the physical system. By contrast, in our method messages are used for a va-
riety of purposes, and the process-interconnection structure of the simulator
need not represent the structure of the physical system. There is no reason
to constrain the structure of the simulator program to reflect the physical
world. Our goal is to exploit the architecture of a parallel computer to obtain
fast execution, and the relevant yardstick is execution time. At an abstract
level, distributed simulation algol ithms are suitable for all parallel archi-
tectures, but there are differences at the level of detailed implementation
that impact performance. The efficiency of a simulation program depends
on the characteristics of the target computer: the underlying, architecture
(message-passing muiticomputer, shared-memory multiprocessGr [1]]), the
amount of memory, the number of processors, the speed of synchroniza-
tion, and process switch time. The question of interest is how appropriate a
simulation algorithm is for a given application and a given target computer.

Another difference between the method proposed here and those in the
literature is our use of conditional events. The event list in a sequential
simulation is a list of conditional events: The meaning of an event in the
event list is that it is the next event to be executed provided there is no ear-
lier event. For example, a preemptive priority queue serving a low-priority
customer with a remaining service time of T units will complete service of
the customer T units later, provided no higher priority jobs arrive while the

low-priority customer is being served. The earliest event in the event list is
the next event to be executed, even though it is a conditional ev_i,t. Thus
the event list is a mechanism for determ:.ning definite events (i.e., events
that occur in the _ystem being simulated) from conditional events. We
employ conditional events in much the same way tl_t they are employed
in sequential simulation. We also use other ways of determining definite
events. Consider again a preemptive priority queue serving a highest prior-

ity customer w!th a remaining service time of T units. This customer will
depart after T t'_me units no matter what happens in the future. Thus we
can determine that the departure of the highest priority customer is a defi-
nite event without using the event list. A critical element of the success of
our method is determining as many definite events as possible without using
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the fact that the earliest conditional event is also a definite event. The use

of conditional events guarantees absence of deadlocks, and furthermore we
need not use null messages to guarantee progress [7].

2 The Physical System

2.1 Physical Processes

Our goal is to simulate a system on a parallel computer. The system that is
to be simulated is called the physical system, and a process in the physical
system is called a physical process (or PP) in contrast to a process in the

simulator, which is called a logical process (or LP).
In the physical system, time is integer-valued. Initially time has value

0. We are required to determine the behavior of the physical system at all
times in the interval [0, HI where His the horizon of the simulation.

A set of input ports and a set of output ports are associated with each
PP; inputs to the PP are received along its input ports, and outputs from
the PP are sent along its output ports. The state and the outputs of a PP
at time t + 1 are functions of its state and its inputs at time t for all t where
t >_0. Thus a PP is defined by a set of input ports, a set of output ports, a

set of states, an initial state and a next-state function, and an initial output
and a next-output function for each output port.

2.2 A System of Physical Processes

A physical system is a set of PPs and a set of conn,ections where each con-
nection connects one output port of a PP to one Jr,put port of another PP.

The value of an input port is (always) equal to the value of the output port
that it is connected to. The state of a physical system is given by the states
of its PPs and the values of the ports of its PPs. Thus the state of a physical

system at time t + 1 is a function of its state at time t, for all t where t _>0.
The initial system state is determined by the iidtial states of its component

PPs. The problem is to compute the state of the physical system for all

times t in the interval [0, HI.
A simple solution is to compute the state of the physical system for

increasing values of t, for all t in [0, H]. In this pape- we design a parallel
solution.

All PPs and all ports have unique names.

3
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3 The Simulator

3.1 Overview of the Algorithm

The simulator is described for a message-passing multicomputer implemen-
tation in which messages axe delivered in the order sent. We first _escribe
a synchronous version of the algorithm and later describe an asynchronous
version.

The simulator has one logical process (LP) for each PP. Let PP X be
simulated by LP X, for all X. Assume, for the time being, that the simulator
network is fully connected, i.e., each LP can send messages to all LPs.

The basic operation of LP X is a repetition of the following loop:
begin-loop

1. Determine inputs to PP X from initial corMitions and messages it has
received from other LPs.

2. Compute outputs from PP X as far into the future as possible given
the inputs to PP X that have been determined so far, and send a
message to each LP.

3. Wait to receive a message from each LP.

end-loop

The algorithm is synchronous in the sense that an LP receives messages
from all other LPs on each execution of the loop. The synchronous algorithm
is simpler than the asynchronous version in which an LP does not walt to

receive a message from every other LP, and so we describe the synchronous
version first.

3.2 Local Variables of an LP

An LP X has the following local (integer) variables:

* a time u_ for each input port r

. a time us for each output port s

• a set Ex of pairs (op, rnsg) where op is an output port of PP X and

msg is a message sent along op

o a time nextz
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* a time Cx[Y] for each LP Y

The local variables of LP X have subscript X, r, or s; this makes it easier
to describe the algorithm because each variable used in the algorithm has a

distinct name (because all processes and ports have unique names).
Local variables ur and us have the following meaning:

• LP X has received messages from another LP defining the input to

PP X alo,,g port r in the interval [0, ur], and

• LP X has sent messages to another LP defining the output from PP
X along port s in the interval [0, us].

Variable Cx [Y] is a buffer to store the nextr field of messages received
from LP Y; all messages from LP Y contain a nextg field, and when LP
X receives a message from LP Y it stores the value of the nezty field of
the message in Cx[Y]. An invariant of the program is that if there are no

messages in transit from LP Y to LP X then Cx[Y] = ne_,tr. Similarly,
ur may be thought of as a buffer for u,, where ports r and s are connected.
Let s be an output port of PP Y connected to input port r of PP X. Every

message sent by LP Y to LP X contains the value of u, and when LP X
receives the message it stores this value in u_. An invariant of the program
is that if there are no messages in transit from LP Y to LP X then u, = u°.
Variables u_ and u8 are monotone nondecre_sing.

The Earliest Conditional Event. Let eonel, be the time at which

the next message is sent by PP X along output port s after time ,,_ if there
are no input.s alono r after time u_, for all input ports r of PP X. Define
nextx as the minimum of eond, over all output ports s of PP X. Define Ex

as the set of pairs (op, ms0) where PP X sends message msO along output

port op at time neztx i/ there are no inputs alono r after time .,r, for all
input ports r of PP X.

Example. Consider a preemptive priority queue with one input port r

through which all customers arrive, and one output port s through which all
customers depart. We treat the queue as a PP and customers as messages.
Since there is only one output port, _,eztx = conds. Initially u_ -- 0 and
us -- O. Customers in the queue have one of two priorities: high or low.
We shall show that if initially the customer at the head of the que110 has a
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service time of T units, then conds = T, and if initially the queue is en _
then condj = oo.

Suppose the customer at the head of the queue is a high-priority cus-
tomer. Then this customer will leave the queue at time T, no matter what
future inputs are. Therefore, in this case, cond, = T, and Ex is {(s, HI)}
where HI represents the departure of a high-priority customer.

Now suppose the customer at the head of the queue is a low-priority
customer (and in this case there are no high-priority customers in the queue
initially). If a high-priority customer arrives before T, then the low-priority
customer is preempted and must wait at least until the arriving high-priority
customer finishes service. If no high-priority customers arrive at the queue
before T, then the low-priority customer will leave the queue at time T.
Therefore, eond, = T because concls is the time of the next departure after
time us along port s if there are no arrivals along port r after time ur. In this
case, Ex is {(s, LO)} where LO represents the departure of a low-priority
customer.

Finally, consider the case where the queue is empty initially. No customer
leaves the queue if no customer enters the queue, and hence condo = oo.
In this case, Ex is {(a, null)} where null represents the departure of no
customers.

The meaning of conds is an extension of the meaning of the time of a
conditional event in s_quential simulation.

In addition to the variables described here, an LP has other local vari-
ables to carry out the simulation of the corresponding PP and to gather
statistics; at this time we choose to ignore these variables and to focus at-
tention on the variables required for communication.

Note: The symbol u stands for upto: Communication along a port r
has been computed upto time ur. The symbol a is used for output ports
because it stands for sending port; 3imilarly, the symbol r is used for input
ports because it stands for receiving port.

3.3 Messages Exchanged by LPs

A message sent by an LP X to an LP Y contains the following information:

• For each output port s of PP X that is connected to an input port of

PP Y: A pair (a, Dj) where D, describes the output along port , of
PP X after time uo.

6
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• The time nextx defined earlier.

We now define Ds.

Representing Physical Communication. A sequence of outputs
after time u3 along an output port s of a PP is represented in the simulator

by the sequence O3 of pairs (t[i],e[i]),O < i < K where K > O, t[i] is a time

where t[i] > u,, and eli] is either an output along s or the special symbol
null. Sequence D3 is ordered in increasing order of t[i] and represents the

outputs along s in the interval (us,t[K]] in a simulation in which:

• eli] is output along s at time t[i] if e[i] is not null, and nothing is
output along s at t[i] if eli] is null; and

• nothing is output along s in the interval (u,, t[K]] at times other than

t[i], 0 < i < K.

Concurrent with sending the message containing Ds, us is assigned the value

t[K]; and when an LP receives a message containing D3, u, is a_signed the
value t[K] where r is the input port connected to s. Therefore, us and u_
are monotone nondecreasing.

Example. Consider a simulation in which for some output port s of
a PP X the following values are output after time 3: B at time 5, C a.t

time 10, B again at time 20; and there are no other outputs along s in the
interval (3, 30]. With u8 = 3, the outputs along port s in the interval (3, 30]

can be represented in the simulation by a message containing the following
sequence: (5,B), (10,C), (20,B), (30,null). Concurrent with the sending of

the message, uj becomes 30; and when an LP receives the message, it sets
u_ to 30.

3.4 The Algorithm

Initially, for all input ports r: u_ -- 0, and for all output ports s: us = 0. For
simplicity, assume that no messages are sent in the physical system at time
0; therefore, assume that initially all LPs have received messages (0, null)
for each input port and have received messages with nexty = 0 from all LPs
Y. Hence, initially nextx = O, Cx[Y] = 0, and Ex = {(s, null)} where s is
an output port of PP X.

An LP X repeatedly executes the following loop:
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begin-loop

1. Obtain definite events from conditional events

If equation 1 (b_low) holds,

nextx = mi_,;imum over all Y of Cx[Y]. (1)

then ms9 is (definitely) output by PP X along port oF at time neztx
for all pairs (op, rnsg) in Ex.
Compute as many definite events as possible
The messages received by LP X describe the input to PP X along
port r upto time u_, for all r. Use the initial conditions, the messages
received, and the definite events obtained from conditional events to
compute the (definite) output of PP X as far into the future as possi-
ble.

2. Message sending
Update neztx and Ex and send a message to each LP Y -- the
message contains the (updated) value of neztx, and for each output
port s of PP X connected to an input port of PP Y the value (8, Do)
-- and update uo.

3. Message receiving
Wait to receive a message from each LP. Upon receiving a message
from LP Y, set Cx[Y] to the neztr field of the message, and update
ur for all input ports r of PP X connected to PP Y.

end-loop

Example. Consider a cyclic queueing network with three preemptive pri-
ority queue_: q0, ql, q2, where the outputs of q0, ql, q2 are the inputs to ql,
q2, qo, respectively. There are two prioritie _.of customers -- high and low
-- and priorities do not change. The system contains three customers who
remain in the system forever; customers do not enter or leave. Initially qo

contains a high-priority customer with a service time of 13 units, ql contains

a low-priority customer with a service time of 17 units, and q2 contains a
low-priority customer with a service time of 11 units. For simplicity, assume
that a customer's service time is the same in all queues. Let ri and si be

the input and output ports (respectiv_.ly) of queue i, i = 0, 1,2. The first
few iterations of the simulation are given in Table 1.

The table sho_s the values of variable° at the end of each iteratiot,.. Now
we shall discuss the first iteration in detail.

8
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iterat_ ]2 [3 ]1

queue 0 next 0 13 _ I 24
E r 111 HI null I LO

!

u- r0 0 0 11 I 11
u-sO ]i0 13 13 13

D 13,HI () ()

queue1 P,_xt 0 17 26 30
E null LO HI LO

u - rl 0 13 13 13
u- sl 0 0 26 26

D () 26,HI ()

queue 2 next 0 11 11 39
E null LO LO HI
u - r2 0 0 0 26
u - s2 0 0 11 39

D () ll,LO 39,HI

Table 1: A simulation

A high-priority customer will leave queue 0 at time 13 no matter what
future inputs may be. Therefore, LP 0 sends a message with D,o = (13, HI)
to LP 1 and concurrently sets urn0to 13. Since a high-priority job leaves at

time 13, nexto = 13 and E0 = {(sO, HI)}. Since LP 0 receives a message
from LP 2 with Da2 being the empty sequence, ur0 remains unchanged at 0.

Now consider queue 1. A low-priority customer will depart the quel, e at

time 17 if no high-priority customer arrives earlier. Therefore, next1 = 17
and E1 = {(sl, LO)}. LP 1 sends a message with Dal = () to LP 2,
and leaves u_l unchanged because no definite output from queue ] can be

predicted. The behavior of queue 2 is similar.
On the second iteration, LP 2 converts the conditional event of a depar-

ture of a low-priority job at time 11 into a definite event because it has the
smallest value of next. The remainder of the table is straightforward.

3.5 Outline of Proof of Correctness

Safety. We are required to prove the invariant that all outputs of LPs
are outputs of PPs. For our program this reduces to showing that the

9
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conversien of conditional events to definite events is correct. We shall show

that if nextx - minimum over all Y of Cx[Y], then the outputs in Ex are
sent at time neztx in PP X.

We shall use the superscript k to denote the value of a variable at the
end of the k-th iteration. From the program:

c [Y] =next ,. (2)

k k for all ports r, s connected to each other. (3)U r -_ U s

Define T as follows:

T = minimum over all Y of C_ [Y]. (4)

From equation 2 and the above:

T = minimum over all Y of next_. (5)

We shall show by induction on t that for all t where t < T, there is no

output (in the physical system) along port s in the interval (uk,,t] for all
output ports s in the system, and there is no input along port r in the

interval (urk, t] for all input ports r in the system.
Base Case. The induction hypothesis holds vacuously for t = 0.

Induction Step. Assume the hypothesis true for all times up to and
including t - 1, where t < T, and we shall pro-e it true for t. For all
input ports r there is no input in the interval (u_, t - 1], from the induction
hypothesis. From the meaning of nezt_, for all t where u,k < t < nezt_,
there is no output along port s of PP Y at time t if for all input ports r of PP
Y there is no input along port r in the interval (u k, t - 1]; from equation 5

the same holds for all t where u_ < t < T. Therefore, for all output ports
s there is no output at time t where u_ < t < T. Employing the induction

hypothesis, there is no output along port s in the interval (uk,,t]. From

equation 3 there is no output along port s in the interval (u_, t]. Siv ce the
value of an input port is equal to the value of the output port that it is
connected to, there is no input along an input port r in the interval (u_, t].

This completes the proof by induction.

Let nextkx = T. We have shown that for all input ports r of PP X there
are no inputs in the interval (u_, T). From the meaning of next_x it follows
that at time nextkx, PP X outputs msg along port op for all (op, msg) in

10
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Progress. For the k-th iteration, all k, there is at least one LP X such
that:

nextkx = minimum over all Y of next_. (6)

This LP determines at least one definite event. This event is output on
the k-th iteration if it can be determined that the event is definite without

using equation 6; otherwise, it is output on the k + !-th iteration. Thus at
least one LP outputs an event at least once in every two iterations. Since
the outputs along a port are monotone increasing in simulated time, the

simulation progresses.

4 Asynchronous Version

In the synchronous version, an LP receives messages from all other LPs and
sends messages to all other LPs in each iteration. Now consider an asyn-
chronous version in which there are no such iterations. An LP computes the
output of the corresponding PP as far into the future as possible, and sends
this output to the appropriate LPs. When an LP receives a message from
any other LP, it computes further output of the PP and sends the output.
Thus an LP need not wait to receive messages from all other LPs before
computing further and sending messages. The simulation may not progress
because all LPs may be idle, waiting to receive messages. Conditional events
can be used to avoid deadlock.

As long as there are messages waiting in an LP's input buffer, the LP
does not use conditional events. Conditional events axe used only when

the LP would be otherwise idle. The proof of the synchronous version sug-

gests how the asynchronous program can be structured. The proof rests on
equations 2 and 3, and these equations play a key role in the design of the
asynchronous algorithm. Our goal is *o design an algorithm in which an LP
X can determine whether equations 2 and 3 (or equivalent equations) hold.
We now present an algorithm and later discuss its proof.

The Algorithm. Each LP Y records nexty and, for each of its input
ports r, the number of messages n_ it has received along r, and, for each
of its output ports s, the number of messages nj it has sent along s. The
recording must be an atomic action in the sense that the values of nexty, nr,
and n, must not change during the recording. The recording is carried out
at arbitrary times with the constraint that an LP re-records its values some
finite time after they change. LP Y broadcasts (also at arbitrary times) the

11
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values it has recorded, again with the proviso that it re-broadcasts values

some finite time after they change. An LP X has local variables Cv[Y],
Dx[r], and Dx[s], in which it retains the last values received of neztr, nr,
and n_, respectively, for all LPs Y where Y 5_X, and all ports r, s of PPs in
the system other than PP X itself. LP X guarantees that Cx[X] -- neztx,
and for all its input ports r, Dx[r] = nr, and for all its output ports s,

Dx[s] = ns. (Therefore, LP X does not send messages to itself.)
Conditional events are converted to definite events as follows. We are

given the conditional event that PP X outputs the messages in Ex at time
neztx if for each of its input ports r, it receives no message along r after
time u_. If equation 1 and equation 7 (below) hold, then PP X (definitely)
outputs the messages in Ex at time neztx.

for all ports r, s connected to each other : Dx [r] = Dx [s]. (7)

Note that all the variables named in equations 1 and 7 are local to LP X.

Outline of Proof. The proofisbasedon theconceptofglobalsnapshots

[2,3].A globalsnapshotisa stateofthesystem(andinthiscasethesystem
isthesimulator)thatcouldhaveoccurredearlier.Ifeachprocessrecordsits
localstate,themessagesithassenton eachoutputport,and themessages
it has received on each input port, then the collection of local recordings is

a global state if and only if the number of messages sent along each output
port is greater than or equal to the number of messages received along the

input port that it is connected to. (We assume that initially there are no
messages in transit.) The state of a channel from an output port s to an

input port r, in the global state, is the sequence of messages sent along s
in the recording, excluding the sequence of messages received along r in the
recording.

If equation 7 holds, then the values nezty = Cx[Y], nr = Dx[r], and

n, = Dx[s] form (part of) a global state G, because for all connected pairs
of ports s and r, the number of messages sent along port s in G is equal to
the number of messages received along r in G. In global state G, ne_ctr =

7x[Y]; see the similarity to equation 2. Also, for all connected ports r and
s, ur = uj in G -- see the similarity to equation 3 -- because nr = ns in

G. Now the proof that PP X outputs the messages in £x at time neztx is
exactly the same as in the synchronous version, with the values of variables
at the k-th iteration in the synchronous version representing the values of

the corresponding variables in global state G in the asynchronous version.
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Outline of Proof of Progress. We shall show that the simulation does
not reach a deadlocked state in which all LPs are w_.iting for messages and
all channels are empty. If the system remains in a state in which there
are no messages in transit, then (from the algorithm), for all LPs X, equa-
tion 7 holds (because nr -- n, since there are no messages in transit, and
Dx[r] = n_,Dx[s] = ns, since LP X receives the latest recorded values
from all processes). By the same argumemt, for LPs X, Y: nexty = Cx[Y].
Consider the LP, say X, with the smallest value of next. For this LP, equa-
tion 1 holds as well, and hence it converts a conditional event to a real event.
Therefore, at least one LP eventually makes progress.

5 Experimental Results

5.1 The Physical System

For our initial experiments, we chose problems that appear to be unsuited for
conservative methods. Experiments in the literature [8] suggest that conser-
vative distributed simulation methods are inefficient for queueing networks
in which the routes that customers follow through networks are random.
Therefore, for our first set of experiments we chose networks with several
switches, where each switch has several incoming edges and several outgoing

edges; a customer entering a switch leaves via one of the outgoing edges with

a given probability. A customer leaving a switch enters a tandem sequence
of queues and then enters another switch. Experiments were done both for
first-come-first-served (fcfs) queues and for preemptive-priority queues. In
the later case, each customer in the network is assigned a priority: either

high or low. The network is closed, i.e., customers neither leave nor enter
the network, and customers that are initially in the network remain in the
network forever. Our experiments are characterized by the number N of

switches, the number L of queues between the output of one switch and the

input of another, the probabilities associated with each output edge from
each switch, and the number of customers in the network. The last param-
eter is denoted by J in the case of fcfs queues and by Jr, Jh, standing for
the number of low- and high-priority customers, respectively, in the case

of preemptive-priority queues. A variety of topologies can be simulated by

setting the probability of following some output edges of a switch to 0, and
others to 1.

A strong argument can be made that queueing networks (or indeed any

system with a large stochastic component) should not be simulated using
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distributed simulation. The time taken to simulate stochastic systems is

largely spent in reducing the variance of the results, and the most efficient
scheme for variance reduction is replication. We use queueing networks

because they serve as easily understood benchmarks.

5.2 Implementation

The synchronous version of the algorithm was implemented in Cosmic C [10]

running on an Intel iPSC/1. We did not experiment with the asynchronous
version, because the synchronous version gave almost linear speedup, and
the asynchronous version cannot do much better. A few points about the

implementation are of general interest, and are not limited to the example
discussed here.

5.2.1 Mapping the Physical System to a Multieomputer

Process Switching. The time taken for the operating system to switch
control from one process to another, in a node of a multic_omputer, can be
substantial. We reduce process-switching overhead by executing switching
within the simulation rather than by calling the operating system.

Load Balancing. An important aspect of efficiency in concurrent systems
is load balancing: The implementation should be designed so that all nodes
in the system have about the same amout of load. We mapped the queueing
network onto the computer to ensure that each node was (roughly) equally
active.

Grain Size. If the execution time between message-sending is small com-

pared to message delay, the overhead of communication can negate the speed

gained from concurrent execution. In our experiments, care was taken to
ensure that the the process grain size matched the computer. The networks

we simulated were large, and the amount of computation per message was
of the same order as message delay.

Lookahead. The simulation is written so that each LP determines the be-
havior of a PP as far into the future as possible. An LP ceases computation,
and waits for additional input, only if it cannot determine any more outputs
of the PP that it is simulating.

14
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Caveat. The success of our experimental results is probably based on the

care with which the problem was mapped onto the iPSC/1. Poor results
may be obtained from a simulation in which:

• the overhead of process-switch time plays a significant role in the ex-
ecution time of the simulator, or

• the loads across nodes of the computer are significantly out of balance,
or

• there is a mismatch between the process grain size and the target
computer, or

• LPs do not look ahead.

5.2.2 Unifying Conservative Methods

A goal of our experiments is to unify conservative methods on the one hand,
and ideas that have been developed in sequential simulation on the other.
We employ null events by which one LP informs another how far it has
progressed in the simulation, and in this sense, our method is similar to
null event schemes in the literature; but we do not depend on null events
to guarantee progress. The speedup obtained does depend significantly on
the use of null messages. We employ conditional events in much the same
way that they are employed in sequential simulation, and in this sense, our
method is an extension of sequential simulation. The use of conditional
events can be thought of as one way of breaking deadlock; and in this sense,
our method has some similarity to deadlock-breaking schemes, except that
there is no need for a deadlock-detection algorithm.

A goal of our (continuing) work on efficient implementations of dis-
tributed simulation is a search for paradigms that unify apparently disparate
ideas.

5.3 Results

Ex?eriments were done for networks of N = 12 and N = 24 switches, with
path lengths L = 5 and 10. For fcfs queues, we experimented with number
of customers J: N x 10, N × 50, and N x 100. In the case of priority
queues, experiments were done with Jt,Jh (the number of low- and high-
priority customers, respectively) as follows : N x (10, 10), N × (50, 10), and

x (90,lO).
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Each of the above networks was simulated once with equal probabilities

for each output port of each switch and once with different probabilities for

each output port (e.g., for N = 12, probabilities range from 0 to 0.2). The
results were very similar for the same network for the two cases (i.e., equal
and different probabilities).

Speedup was computed relative to the execution time for one simula-

tioa process. For this example, the sequential version resulting from the
distributed algorithm was at least as efficient as a central event queue im-
plementation.

Figures 1 through 3 and 5 through 7 summarize the speedups computed
for the fcfs networks of size N = 12 and N = 24, respectively, using M = 2

to 24 processors. Figures 4 and 8 give the maximal speedups computed for
these networks for different values of J, for N = 12 and N = 24, respectively.
Figures 9 through 11 summarize the speedups computed for the priority

queuing networks with N = 24, and figure 12 give the maximal speedups
computed for this network for the different values of Jh, Jl.

6 Conclusions

The ratio of the execution time of a concurrent program to the execution

time of a sequential program (for the same problem) depends on several
factors:

• The concurrent and sequential algorithms employed

In our case, the conventional sequential discrete-event simulation pro-

gram is slower than the concurrent algorithm running on a single pro-
cessor. This is because the concurrent algorithm is tailored to the

problem (simulating a network of priority queues) whereas the sequen-
tial algorithm is general. Therefore, in our analysis, we compared the
execution times of the concurrent algorithm running on computers

with different numbers of processors.

• Computations on global states

In most physical systems, the behavior of a PP can affect the be-

havior of all other PPs. (For instance, a job departing from a queue
may eventually arrive at each of the other queues.) Because of this

'global' effect, most distributed _:imulations carry out some computa-

tion on the (global) state of the simulation; deadlock detection and
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the computation of global virtual time [6] are examples of such com-
putations. Global computations require communication between LPs.

The greater the frequency of such computations, the greater the com-
munication overhead.

The implementation of our algorithm is semi-synchronous: the algo-
rithm consists of repeated executions of a loop in which LPs carry

out a simple global computation and then each LP carries out a lo-
cal computation. The efficiency of the algorithm depends primarily

on the amount of local computation in the loop: if there is a large
amount of local computation, the advantage of concurrency outweighs
the overhead of global computation. Therefore, the algorithm provides

speedup if the problem is large (i.e., it requires a great deal of compuea-
tion), the computation is load balanced, and the number of processors
is small enough that each processor has a significant amount of local
computation to carry out. In our experiments, the use of null events

increased the ratio of local to global computation a hundred-fold. A
null event gives a lower bound on the time of the next event; the tighter
the bound, the better the ratio of local to global computation.

Better speedup was obtained for preemptive-priority networks than for
first-come-first-served networks. This may seem counter-intuitive, be-

cause the future behavior of a queue in a preemptive-priority network
is more dependent on the current behavior of other queues. (Jobs de-
part a first-come-first-served queue in the order in which they arrive, no
matter what h_ppens at other queues, whereas in a preemptive-priority

queue, a low-priority job is preempted by the arrival of a high-priority
job.) The speedup for preemptive-priority networks was obtained for

two reasons: first, simulating preemptive-priority networks requires
more computation, even in a sequential implementation; second, null
events are used to determine the future behavior of preemptive-priority

queues.

• Algorithms tailored to the physical system

The speedup obtained ;n Gur experiments is due in part to the algo-
rithms being tailored to the problem: simulate a preemptive-priority
queueing network. We expect the algorithm to work well on problems
that have structures that can be exploited -- problems such as circuit
simulation and simulations of classes of queueing networks. We expect
the algorithm to work poorly on problems that have no structure --
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problems in which any PP can communicate with any other PP.

In summary, it is possible to obtain significantly faster execution of simu-
lations on concurrent computers by matching the problem and the algorithm

to the computer.
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